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Statistics

Physicists and Astronomers invented much of statistics but in the
20th Century have fallen behind. There is a strong tendancy to
take the “hammer” approach:

“I call it the law of the instrument, and it may be formulated as
follows: Give a small boy a hammer, and he will find that
everything he encounters needs pounding.” ( Abraham Kaplan,
1964).

Physicists tend to have a small cookbook of “recipes”, and grab
the one that cursorily seems best. It might be sub-optimum or
inapplicable!
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Statistics

What is a “statistic”?

It is a number (or small group of numbers) that summarizes the
data.

Ideally the statistic is selected for useful properties, such as its
ability to discriminate between hypotheses.

You can create your own statistic!
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Statistical Tasks

There are basically two tasks for statistics:
hypothesis testing (comparison)
parameter estimation, including errors

Not: “goodness of fit”, beloved of scientists, is not liked by
statisticians.
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Hypothesis Testing

Done by comparing two hypothesis, an alternative model H1 that
you wish to “prove” and the null hypothesis H0. Conventional
statistics uses a backwards approach: the alternative model H1 is
demonstrated by rejecting the null hypothesis H0.

Limitation: You might show that H1 is preferred over H0, but
actually H2 that you never considered is much better than either!

Calculate the statistic. If you find that the value is highly
improbable under H0 you can reject H0 and you now prefer the
alternative. Otherwise you stick with the null hypothesis.

There are two possible errors: “demonstrating” H1 when that
hypothesis is false, or sticking to H0 when H1 is actually true, We
guard against the first error by requiring a high confidence level
(i.e., small chance probability) but concomitantly increase the
probability of the second error.
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Likelihood and Likelihood Ratio Tests

L =
∏

P (1)

−2 log L is frequently more convenient. The products become
sums. If the probabilities are Gaussian, χ2 is obtained.

Model comparison statistic:

Λ =
L(θ0)

maxL(θ)
(2)
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Wilk’s Theorem – 1

From Wikipedia:

“A convenient result, attributed to Samuel S. Wilks, says that as
the sample size approaches ∞, the test statistic for a nested model
will be asymptotically distributed with degrees of freedom equal to
the difference in dimensionality of theta0 and θ. This means that
for a great variety of hypotheses, a practitioner can compute the
likelihood ratio Λ for the data and compare −2 log L to the
chi-squared value corresponding to a desired statistical significance
as an approximate statistical test.
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Wilk’s Theorem – 2

That already has some important “ifs”!

But there is another one, brought forward by Protassov et al. in
ApJ.:

“the null values of the additional parameters may not be on the
boundary of the set of possible parameter values”
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What to do?

What to do when the reference distribution is unknown?

Simulate!
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Bayes’ Theorem

Bayes’ Theorem is a simple theorem of probability:

P(A|B) =
P(A)P(B|A)

P(B)
. (3)

No one can dispute Bayes’ Theorem. The issue is its usefulness.

In conventional or frequentist statistics, probabilities are considered
to be derived from set theory, or from long-run averages of
measurements. From these definitions, it is nonsense to speak of
the probability that a hypothesis is true. If a broader definition is
allowed, Bayes’ Theorem becomes much more useful:
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Bayesian Inference – 1

P(H|D, I ) =
P(H|I )P(D|H, I )

P(D|I )
, (4)

where H is a Hypothesis, D is the Data and I is other Information.

Bayes’ Theorem allows the “inversion” of the contents of the “P”s.
Generally a hypothesis allows us to calculate the probability of
observing particular data: P(D|H, I ). With Bayes’ Theorem, we
can convert this into a probability statement about the hypothesis:
P(H|D, I ).
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Bayesian Inference – 2

P(H|D, I ) =
P(H|I )P(D|H, I )

P(D|I )
, (5)

P(H|I ) is called the prior, the probability of the hypothesis before
collecting the data.

P(H|D, I ) is the posterior probability – the probability updated
based upon the data.

P(D|H, I ) is the likelihood.

P(D|I ) is a normalization factor.
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Bayesian Inference – 3

Now if we take the ratio of Bayes’s Theorem for two hypotheses
the P(D|I ) term cancels:

P(H1|D, I )
P(H2|D, I )

=
P(H1|I )P(D|H1, I )

P(H2|I )P(D|H2, I )
(6)

13 / 17



Ockham factor
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Epistemology

binary logic ⇒ Bayesian Inference
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